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Abstract 

The flow in a long, high pressure, natural gas pipeline following sudden rupture was 
modelled as unsteady one-dimensional isothermal flow. The set of hyperbolic partial differen- 
tial equations were solved with a numerical method of characteristics. The accuracy of the 
numerical scheme when using linear characteristics with quadratic interpolation was found 
to be adequate. It was also found that the effect of the curvature of characteristics in 
isothermal flow was not as pronounced as it was reported in adiabatic Bow by Flatt. To assess 
the hazard of a natural gas pipeline rupture, it is necessary to know the rate of outflow of the 
gas at the breakpoint as a function of time. The predicted mass flow rate of gas out of the 
broken end was 18% lower than that predicted using adiabatic flow theory, whereas, there 
was good agreement with the results of earlier workers who also used isothermal flow theory 
whose computation method was based on weighted residuals. 

1. Introduction 

Transient pressure fluctuations in gas pipelines are usually initiated by 
sudden opening or closure of valves or by compressors. They involve transmit- 
tal and reflection of pressure waves in the piping system and may result in pipe 
rupture from excessive pressure. 

The unsteady flow of a gas in a long pipeline after an accidental rupture is of 
considerable interest to the gas industry because the pipeline contains an 
enormous amount of flammable gas and a break in it represents a considerable 
hazard. It is necessary to know the rate of loss of gas from the break to 
calculate the dispersion range and ground concentration of the air-gas mix- 
ture. After rupture, the flow in the low pressure segment of the pipeline is more 
complex than that in the high pressure segment since the expansion waves 
entering the pipeline cause flow reversal in the case of the flow in the low 
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Fig. 1. Physical situation of the problem showing an expansion wave entering the pipeline 
after rupture. 

pressure segment. In Fig. 1, it is assumed that the rupture is equal to the pipe 
cross-sectional area and immediately to the left of the rupture (in the high 
pressure segment of the pipeline) a valve is closed completely at the instant of 
rupture. 

Fannelsp and Ryhming [I] studied the unsteady flow in a natural gas 
pipeline in which a break occyrred at the high pressure end. They divided the 
flow into three time regimes. The “early time” regime following the sudden 
break is dominated by wave processes and the pressure at the open end 
approaches the ambient value. This is followed by the “intermediate time 
regime” in which an internal pressure peak occurs, the location of which 
corresponds approximately with the location of flow reversal where the velo- 
city is zero. By the time the pressure peak gets to the low pressure end of the 
pipe (the closed end), the “late time” regime starts. In this time regime, the 
pressure in the pipeline decreases monotonically from the closed end of the 
pipe to the open end. 

They used an integral method to analyse the unsteady flow in the pipeline 
assuming the flow to be isothermal. They ignored inertia terms in the equa- 
tions to obtain a set of parabolic equations. Their method could not handle the 
early time regime and it gave no information on the internal flow because 
spatial distributions in the range x=0 to r= E0 were assumed for the pressure 
and pressure-velocity product to obtain solutions. 

Lang and Fannelsp [Z] improved on this work by using some approximation 
procedures in the family of weighted residuals. The flow profiles were not 
specified a priori as in the work of Fannelop and Ryhming but were found as 
part of the solution. They were able to obtain more accurate results but their 
methods produced oscillations in the dependent variables predicted during the 
early time regime. 
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Ryhming [3] used the method of matched asymptotic expansion to study 
unsteady isothermal flow in a long pipeline ruptured suddenly. He showed that 
wall friction caused the velocity derivative along the pipe to become singular 
at the broken end exit when the flow there was critical. His composite first 
order solution gave velocity profile in the pipeline at various times. Since his 
analysis concentrated on predicting the velocity profile and did not include 
pressure or density variations in the pipe, it could not be used to predict the 
flow rate out of the pipe during the early time regime. 

Flatt [4] developed a method of characteristics to compute unsteady 
adiabatic flow of natural gas in a long pipeline following a sudden break. Since 
he used the full set of hyperbolic partial differential equations, his method 
could handle flows in the three time regimes. 

However, with high pressure variations such as occur in pipeline break 
problems, heat transfer between the fluid and the medium surrounding the pipe 
will be appreciable unless the pipe is lagged. In fact, the flow process is 
expected to be closer to isothermal than adiabatic flow due to compensating 
errors in density and critical velocity that occur in the former. The present 
effort is directed at developing a numerical method of characteristics to solve 
the set of hyperbolic partial differential equations describing unsteady isother- 
mal flow following a break in a long pipeline. It therefore compliments the 
works of Ryhming, Fannelep and Lang in supplying the missing information in 
their analysis during the early time regime. It also has the advantage of being 
applicable to the three flow time regimes. 

Flatt [4] did not apply his adiabatic flow model to predict the flow up to the 
late time regimes because of the long computer time it would take. Since the set 
of equations for isothermal flow (two equations) is simpler than that for 
adiabatic flow (three equations) computation time will be less of a problem in 
this case of the former type, thereby making it less expensive for computing the 
flow for all the time regimes. 

2. Mathematical model 

For one-dimensional flow in a pipe of uniform diameter, the conservation 
equations for mass and momentum are 

where 
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and u2 being expressed as u 1 u 1 to ensure that the frictional force shall always 
act opposite to the direction of motion. 

The equation of state for isothermal flow of a perfect gas is 

P=pRT, (4) 

Eliminating density, p, from eqs. (1) and (2) using (4), the continuity and 
momentum equations become 

a~ ap ,t+uG+Pg=o 

and 

(5) 

(6) 

where the expression for isothermal speed of sound 

c2 = RT, 

has been used. 

(7) 

Although the isothermal speed of sound does not change, the expansion 
wave will fan out as shown in Fig. 1 because the head of the wave travels in 
fluid particles having positive velocity, whereas the tail travels at velocity 
c relative to particles having negative velocity. 

Choosing the length of the pipe, isothermal speed of sound, the ambient 
pressure and temperature as the reference parameters, the non-dimensional 
forms of eqs. (5) and (6) are: 

3. Numeri‘cal method 

Equations (8) and (9) constitute a set of quasi-linear hyperbolic partial 
differential equations which can be solved using the method of characteristics. 
Hartree’s hybrid scheme which was used earlier by Olorunmaiye and Kentfield 
[5] is also used in this work. In this method, a rectangular grid is imposed on 
the integration domain and the equations are integrated along the character- 
istics directions. The dependent variables here are P and U. 

The characteristic curves of eqs. (8) and (9) are given by 

dX 
dZ=u*l 
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Equation (10) gives the downstream and upstream propagation directions in 
the X-Z plane, of a pressure wave travelling at the isothermal speed of sound 
relative to the fluid. 

The compatibility equations along the characteristics 
slopes (U+ 1) and (U- l), respectively, are 

16+P’+6+U -- 
P’ 62 

x+F’=O 

1 S_P’+S_U --- 
P’ 62 

62+F’=0 

having reciprocal 

(11) 

(12) 

The characteristics reaching a grid point for different flow velocities are 
shown in Fig. 2. The characteristics having reciprocal slopes (U+ 1) and (U- 1) 
are labelled OV and TV, respectively. The finite difference approximation of 
eqs. (11) and (12) are 

Uv- Uo+(lnPi-lnPo)= -FovAZ (13) 

Uv- Ur-(lnP$-lnP+)= -_rvAZ (14) 

Rearranging eqs. (13) and (14) gives 

P$=exp [$((&vAZ-F&AZ+ U,- U,+ln P$+lnPo)}] (15) 

The double subscripts on a term indicates that the term is taken to be 
the mean of its value at the end points indicated by the two subscripts 
(See Fig. 2). 

4. Boundary conditions 

For flow with velocity 1 UI 4 1, only characteristic OV reaches the grid point 
at the right end whereas only characteristics TV reaches the grid point at the 
left end. 

I 0 M T N t-f 0 TN 

(a) Flow with lul-zl (b) Flow to the right 
with Ida1 

Fig. 2. Characteristics reaching an internal grid points, 

(c) Flow to the left 
with lul ~1 
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4.1 Right end 
Assuming the change causing unsteady flow in the pipeline happens at the 

left end as in Fig. 1, the pressure and velocity at the right end is not affected 
until Z* when the wave reaches there. Hence, 

Uv(zGz*)= U, (Z=O) (16) 

P;(z<z*)=Pk (Z=O) 07) 

where UE and Pk are flow variables at the right end at the initial condition. 
To simulate the worst case, the valve at the right end is shut instantaneously 

at the time the wave reaches this position. 

U,(z>z*)=o (18) 

This equation and the compatibility equation along OV are solved to obtain 
the value of Pv at the right end. 

4.2 Left end 
At the left end, two distinct time sequences are considered. As long as the 

pressure is sufficiently greater than the external pressure, the flow will be 
choked and 

i&=-l (1% 

Treating the outflow at the broken end when choking occurs as isothermal is 
a rough approximation. A very high heat transfer rate from the ambient to the 
gas would be necessary to keep the temperature of the rapidly expanding gas 
from falling. However, the loss of gas when the outflow is choked is small in 
comparison with the total amount of gas lost during the three time regimes 
because of its short duration. Therefore the inaccuracy of this assumption does 
not affect the computation appreciably. 

When the pressure falls to the level of external pressure, the condition 
used is 

P;=Px (20) 

4.3 Other boundary conditions 
Other boundary conditions which may be used with the model are: 

(i) prescription of the static pressure as a function of time. 
(ii) prescription of the velocity as a function of time. This may be used to 

simulate valve closure. 
The other dependent variable can then be obtained by using the appropriate 
compatibility equation. 

5. Initial conditions 

The initial condition is the steady state in the pipeline prior to the initiation 
of unsteady flow. Neglecting ln( PIN/P>’ in comparison with 4 fx/d in long 
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pipelines (see eq. (6.42) of Ref. [6]), the initial distributions of pressure and 
velocity in steady isothermal flow are given approximately by 

p’(x, 2=0)=&J 1 -D’ 
( 

4fU& x 

> 

1’2 
(21) 

U(X, Z=O)=& U,,/P(X,Z=O) (22) 

6. Stability and accuracy criteria 

The time step was chosen in accordance with the Courant-Friedrichs-Lewy 
stability criterion which requires that 

Eighty percent of this maximum allowable time step was used for the computations. 
An accuracy criterion based on the law of conservation of mass, defined by 

Flatt [4] was used in this work. The accuracy criterion is defined as 

&= 
(Mass in pipe at time t) - (Mass in pipe at time t + At) 

(Rate of mass outflow at both ends)At (24) 

The ideal value is 1. Hence, the error is 

e=.z-1 (25) 
Flatt [4] introduced a factor Kf by which the friction terms of the compatibil- 

ity equations are multiplied for the boundary grid point when the flow is sonic. 
Using the value Kf = 1 leaves the relations unchanged, whereas Kr = 0 indicates 
that the viscous terms are completely omitted. 

He found that the singularity at the broken end during critical flow which 
was discussed in Ryhming’s paper [3] caused greater error in the computation 
when K,= 1 than K,=O. 

7. Numerical schemes 

The equation for the characteristic curves and compatibility relations have 
been derived following standard procedures. However, the actual numerical 
implementation of the method of characteristics is not standard. Linear or 
quadratic interpolation may be used to obtain values of dependent variables at 
the feet of OV and TV characteristics at the old time level. Also the character- 
istics may be assumed to be straight or the effect of their curvatures may be 
considered as suggested by Flatt [7]. 

Three numerical schemes used in this work are: 
(i) linear characteristics and linear interpolation; 

(ii) linear characteristics and quadratic interpolation; and 
(iii) curved characteristics and quadratic interpolation 
A more detailed description of the computation can be found elsewhere 181. 
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8. Results and discussion 

FORTRAN programmes written for the three schemes mentioned above were 
run on a SWAN AT 286112 IBM Compatible Personal Computer with a math 
co-processor using a WATFOR 87 compiler. 

The physical case to which the programmes were applied is an underwater pipe- 
line of length 145 km, internal diameter 0.87 m, inlet pressure 133 atm, outlet 
pressure 55 atm, gas temperature To=281 K, and flow rate about 650 kg/s. The 
outside pressure PO = 6 atm (corresponding to 50 m depth). The pipeline is filled 
with natural gas having a ratio of specific heats y = 1.3 and specific gas constant 
R= 428.2 J/kg - K. This was the case considered in references [l], [2] and [4]. The 
flow in the pipeline is initially steady and isothermal until time t = 0 when the 
pipe is completely broken suddenly at the high pressure end. A constant friction 
factor f= 0.0018 which gives a pressure drop of 78 bars for the steady flow before 
breakage, was used in the computation of the unsteady flow. 

8.1 Comparison of the three schemes 
Table 1 shows the errors and computing time for various number of 

grid points when the unsteady flow process had taken place for 100 seconds. 
The effect of the magnitude of Kf can be seen. When Kr = 1, greater magnitudes 
of error were obtained and the computation time were higher than when Kf = 0 
as was observed by Flatt [4]. Therefore the viscous term was omitted in 
the compatibility equation (K,=O) for the left boundary grid point when 
the flow there was critical, in subse quent computations as was suggested by 
Flatt [4]. 

TABLE 7 

Comparison of error and computation time for the time interval t = 0 to t = 100 s for the three 
numerical schemes for various numbers of grid points 

Number Value Error, e at t = 100 s CPU Time (s) 
of grid of Kf 
points LCLI” LCQIb CCQI’ LCLI” LCQIb CCQI’ 

201 0 0.357 0.429 0.432 69.92 
1 0.967 1.033 0.880 89.42 

401 0 0.228 0.231 0.233 251.40 
1 0.837 0.671 0.669 282.64 

801 0 0.146 0.124 0.124 966.96 
1 0.437 0.334 0.330 1148.08 

1601 0 0.088 0.066 0.066 3927.39 
1 0.231 0.170 0.169 4431.55 

a LCLI = Linear Characteristic and Linear Interpolation. 
b LCQI = Linear Characteristic and Quadratic Interpolation. 
’ CCQI = Curved Characteristic and Quadratic Interpolation. 

75.74 
92.71 
280.56 
310.39 
1087.74 
1278.04 
4289.46 
4564.58 

83.04 
119.91 
309.73 
342.52 

1202.59 
1296.90 
4745.56 
5223.91 
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The higher the number of grid points, the smaller the error for each of the 
three schemes as expected. At a higher number of grid points the two numer- 
ical schemes with quadratic interpolation gave lower errors than the scheme 
with linear interpolation. 

The magnitudes of errors shown in Table 1 may not give a fair assessment of the 
accuracy of the numerical method employed in this work. A global error criterion 
(in time) rather than the local error criterion given in eq. (24), may be better. Even 
the numerical evaluation of eq. (24) is in itself sensitive to numerical accuracy. 

Figure 3 shows the comparison of mass flow rate at the broken end predicted 
with the three numerical schemes using 401 grid points. Since the results 
predicted with the two schemes using quadratic interpolation agree very 
closely, it is better to use the linear characteristics with quadratic interpola- 
tion scheme because the computer time is lower. 

The effect of the curvature of the characteristics is not as important in this 
work as it was in the work of Flatt [4, 71. Since the value of the isothermal 
acoustic velocity (c) remains constant for isothermal flow, the changes in the 
slopes of the characteristics OV or TV (u+-c) are caused only by changes in 
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Fig. 3. Comparison of mass flow rate at the ruptured end predicted with the three numerical 
schemes using 401 grid points. The result obtained by Flatt using adiabatic flow theory is also 
shown. 
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magnitude of velocity which are small especially for a fine grid. This is unlike 
the case of adiabatic flow in which the reciprocal slope of the characteristics 
are (U +a) and both velocity and isentropic acoustic velocity (a) change be- 
tween T and V and 0 and V thereby making the slopes vary appreciably. 

Secondly an isothermal flow has only two families of characteristics whereas 
an adiabatic flow has three families of characteristics. 

8.2 Test cases 
Since a laboratory test of this type of problem cannot be performed in view of 

the enormous length/diameter ratio, no experimental results are available to test 
the model. It is necessary to find some other means to assess the model. Ryhming 
[3] gave the closed form solution of f’rictionless unsteady isothermal flow ob- 
tained during the early time regime when initially there is no flow in the pipe as 

for the geometry being considered. 

0.20- 

0 boo- 

-Q-20- 

-040- 

-oao- 

-o-eo- 

-lQO- 

-1.20 - , 

___ CLOSED FORM SOLUTION 
_-_- PRESENT NUMERICAL 

METHOD 

I I -I 
0.00 0.10 0.20 O-30 

DIMENSIONLESS AXIAL DISTANCE 

(26) 

Fig. 4. Comparison of velocity distribution in a pipeline at 2 = 0.25 predicted with the model 
for unsteady frictionless isothermal flow following sudden break in the pipeline, with result 
obtained from closed form solution. 
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DIMENSIONLESS TIME. 2 

Fig. 5. Comparison of variation of velocity with time at X=0.25 predicted with the model for 
unsteady frictionless isothermal flow following sudden break in a pipeline, with the result 
obtained from closed form solution. 

This solution is applicable for X< 2. For X>Z the velocity U=O, since the 
expansion wave causing leftward flow to the ruptured end has not arrived at 
that point yet. Figures 4 and 5 show comparisons of results predicted with the 
model with the closed form solution when the pipe was initially filled with 
natural gas at dimensionless pressure of 22.17. The agreement of the results 
predicted with the model with the closed form solution is excellent. 

In the second test case, the pipeline was loaded to a dimensionless pressure 
of 22.17 (with reference to ambient pressure of 6 atm at the pipeline depth) and 
a diaphragm separates the left end from a lower pressure reservoir of pressure 
9.05. The diaphragm at the left boundary is punctured suddenly at time t =O. 
After the transients have died out, the flow obtained should coincide with 
steady isothermal flow as in eqs. (21) and (22). The pressure and velocity 
distribution in the pipeline at various times, predicted with the model are 
shown in Figs. 6 and 7. The pressure and velocity distributions at t= 10,000 s 
agree quite well with the steady state solutions, considering the fact that 
coarse grids were used in the computation. 
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Fig. 8. Pressure distribution in the pipeline after rupture, predicted using 401 grid points, 
parameter: t=O, 100, 200, 300, 400, 500, 700, 900, 1000, 2000 s. 

8.3 More results for the North Sea gas pipeline 
The pressure distribution in the pipeline at various times after rupture are 

shown in Fig. 8. It is interesting to see that the pressure does not change at 
dimensionless distance of 0.75 from the broken end for a very Jong time (at least 
1000 seconds). In Flatt’s result, such a point can be seen at a distance of 0.68 
from the broken end in his adiabatic flow analysis for the case in which the 
valve at the low pressure end was closed at t = 0. If the pressure in the pipeline 
were monitored at such a point there would be no appreciable change in the 
indicated pressure for a very long time, even after the expansion wave initiated 
at the rupture has reached that point. 

The variation of pressure at the left and right ends with time are shown in 
Figs. 9 and 10. The pressure starts to rise at the right end as soon as the 
expansion wave gets there and the valve is shut and peaks at a valve of about 
13.7 before it begins to fall. 

Shown in Fig. 3 is the mass flow rate out of the broken end between t = 100 s 
and t = 300 s obtained by Flatt [4] using unsteady adiabatic flow theory. The 

4 
Fig. 7. Pressure distribution at various times for a pipeline linking two reservoirs (101 grid 
points were used in the computation). 
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Fig. 9. Predicted pressure variation with time at the break point. 

results obtained in this present work using isothermal flow theory are lower 
than Flatt results by about 18%. This is partly due to the fact that the 
isentropic sonic velocity is higher than isothermal sonic velocity. 

Figure 11 shows the dimensionless mass flow rate predicted using different 
number of grid points. It took 7 h, 57 min and 17 s to compute the Bow for a real- 
flow time of 2,000 s using 401 grid points. Using 201 and 101 grid points it took 
5 h, 54 min and 3 h, 45 min and 61 s to compute the flow for real-flow times of 
7,000 and 20,000 seconds, respectively. These results agree quite well with that 
obtained by Lang and Fannelsp [2] using spectral collocation method with 
Legendre polynomials, as can be seen in Fig. 11. 

From Fig. 3, the mass flow rate out of the broken end was initially 7,550 kg/s. 
By 100 s the mass flow had reduced to 1630 kg/s. After 5 h and 30 min the mass 
flow rate was less than 15 kg/s, as can be seen in Fig. 11. 

9. Conclusions 

A mathematical model based on unsteady isothermal flow theory and solved 
by the method of characteristics has been presented. The model predicts results 
consistent with the predictions of other workers. 
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Fig. 10. Predicted pressure at the right hand end of the pipe segment. 

Flow rate predicted at the broken end of the pipe is lower than that of 
adiabatic flow theory by about 18% but it agrees quite well with that of Lang 
and Fannelep obtained using a method of weighted residuals to solve unsteady 
isothermal flow equations. 

At a dimensionless distance of 0.75 from the broken end of the pipeline 
segment, the pressure does not change for a very long time. 

The curvature of the characteristics is not as pronounced in isothermal 
flow as it is in adiabatic flow. Therefore it is not necessary to include the 
effect of the curvature of the characteristics in the computation of unsteady 
isothermal flows. 

This model is useful in analysing other unsteady flows associated with 
pipeline operations, such as controlled venting to the atmosphere prior to 
shutdown or repair, and sudden changes in pressure at either end of the 
pipeline. The waves generated in these operations cannot be as strong as 
the waves associated with pipeline rupture. Hence the model can handle 
such situations easily. All that is necessary is to use appropriate boundary 
conditions. 
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Fig. 11. Relative flow rate (& (0, t)/ti (0, t=O)) at the break as a function of time. 
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Notation 

Where applicable non-dimensional forms are given. 

Roman 
C Isothermal speed of sound 

Reference velocity 
d D’=d/& ’ Pipe diameter 
e Error 
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f 
F F’ = Flo /c= 
1, M N V 
10 
0, T 
P 

PO 
R 
t 
To 
u 
X 
z* 

Greek 
At 
Ax 
& 
P 
PO 

Subscripts 
IN 
0 
ov 
R 
T 
TV 
V 

p’= P/PO 

z= tcjlo 

u= u/c 
x=x/ lo 

AZ 
AX 

D=PiPo 

Friction factor 
Friction force per unit mass 
Grid points 
Pipe length. Reference length 
Feet of characteristics 
Mean pressure at a pipe cross-section 
Ambient pressure. Reference pressure. 
Specific gas constant 
Time 
Ambient temperature. Reference temperature 
Velocity 
Axial distance 
Non-dimensional time taken for wave to travel from 
the left end to the right end 

Time step size 
Spatial grid size 
Accuracy criterion 
Density 
Density of gas at the reference pressure and 
temperature 

Initial conditions at left end of pipeline 
Foot of characteristic OV 
Along characteristic OV 
Dependent variables at right end 
Foot of characteristic TV 
Along characteristic TV 
Grid point V 

Superscripts 
Normalized with respect to appropriate reference value 

Operators 
D/D2 
S+ISZ 

SJSZ 

References 

Substantial derivative 
Differentiation following characteristic having 
reciprocal slope (U+ 1) 
Differentiation following characteristic having 
reciprocal slope (U- 1) 
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